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Abstract When sampling animal movement paths, the frequency at which location
measurements are attempted is a critical feature for data analysis. Important quantities
derived from raw data, e.g. travel distance or sinuosity, can differ largely based on
the temporal resolution of the data. Likewise, when movement models are fitted to
data, parameter estimates have been demonstrated to vary with sampling rate. Thus,
biological statements derived from such analyses can only be made with respect to
the resolution of the underlying data, limiting extrapolation of results and comparison
between studies. To address this problem, we investigate whether there are models that
are robust against changes in temporal resolution. First, we propose a mathematically
rigorous framework, in which we formally define robustness as a model property. We
then use the framework for a thorough assessment of a range of basic random walk
models, in which we also show how robustness relates to other probabilistic concepts.
While we found robustness to be a strong condition met by few models only, we
suggest a new method to extend models so as to make them robust. Our framework
provides a new systematic, mathematically founded approach to the question if, and
how, sampling rate of movement paths affects statistical inference.

Keywords Animal movement · Random walk · Sampling rate · Discretization ·
GPS data · Parameter estimation

B Ulrike E. Schlägel
ulrike.schlaegel@gmail.com

1 Department of Mathematical and Statistical Sciences, CAB 632, University of Alberta,
Edmonton, AB T6G 2G1, Canada

2 Present Address: Plant Ecology and Conservation Biology, University of Potsdam,
Am Mühlenberg 3, 14476 Potsdam, Germany

3 Department of Biological Sciences, CW 405, Biological Sciences Bldg., University of Alberta,
Edmonton, AB T6G 2E9, Canada

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00285-016-0969-5&domain=pdf


U. E. Schlägel, M. A. Lewis

Mathematics Subject Classification 92B05 · 60J20 · 62M05 · 62-07

1 Introduction

To learn about animal movement behaviour, researchers across the world collect
increasing amounts of data for many different species. When tracking an animal, e.g.
via GPS-based telemetry, locations are measured at discrete times, and the rate and
regularity of measurements are critical features. From raw location data we can esti-
mate classic movement characteristics such as mean square displacement, measures
of directional persistence or tortuosity, and travel distance (Turchin 1998; Codling
et al. 2008; Rowcliffe et al. 2012). These quantities can vary largely when derived
from movement data with different temporal resolutions (Ryan et al. 2004; Codling
and Hill 2005; Nouvellet et al. 2009; Rowcliffe et al. 2012). When we fit a movement
model to data to perform statistical inference, the temporal resolution of the sam-
pling can both affect parameter estimates and result in erroneous inference such as
misclassified behavioural states (Breed et al. 2011; Postlethwaite and Dennis 2013).
Generally, sampling a continuous path of an animal at discrete intervals can lead to
various degrees of information loss (Turchin 1998).

A few studies used fine-scale movement data to empirically estimate correction
factors to adjust measured travel distances according to the sampling interval (Pépin
et al. 2004; Ryan et al. 2004). While this is a first approach to understand the influence
of sampling interval on measured travel distance, it is unclear whether results can be
generalized from these studies to other species and systems. Another approach has
been to simulate movement according to correlated random walks or velocity jump
processes to estimate relationships between the resolution of a discretized path and
common movement characteristics, such as apparent speed and angular deviation. In
this way, Bovet and Benhamou (1988) and Benhamou (2004) defined sinuosity as a
measure of a path’s tortuosity that is independent of the discretization. While these
studies used “spatial sampling”, that is a rediscretization of a path based on a certain
step length, Codling and Hill (2005) extended the approach to “temporal sampling”,
where discretization is based on a fixed time interval. In addition to sinuosity, Codling
andHill (2005) also investigated the relationship between apparent speed and sampling
interval. Both relationships break down when the observed angular deviation becomes
large, either due to high tortuosity of the underlying movement or a relatively large
sampling time step (Bovet and Benhamou 1988; Codling and Hill 2005). An extension
of this work has recently been provided by Rosser et al. (2013), who more closely
investigated the full distributions of relative apparent speed and apparent angle change.
All these studies demonstrate thatmovement characteristics are highly sensitive to path
discretization but also that, unless discretization becomes too coarse, changes may be
described by functional relationships. However, analyses of this kind are still lacking
for other movement parameters, e.g. parameters that describe selective behaviour with
respect to the environment.

One may think that the best solution to avoid undersampling and information loss
is to take measurements at high rates to approximate a continuous path as best as
possible. However, this is often not feasible, because limited battery life of tagging
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devices gives rise to a tradeoff between sampling frequency and total sampling time
span (Mills et al. 2006; Breed et al. 2011). In addition, oversampled movement paths
can be problematic in data analysis, because they lead to strong and long-lasting
autocorrelations and require the processing of very long time series (Benhamou 2004).
Also, very frequent fix attempts can reduce GPS transmitter efficiency (measured as
total number of successful locations obtained during the deployment time) (Mills et al.
2006), and noise can become very large compared to the actual signal, especially if
animals are resting or moving slowly (Ryan et al. 2004). It is therefore important to
choosemeasurement rates appropriately to the behavioural scale of interest. Even if we
decide about sampling rates with care, it remains a problem that results are often tied to
the data’s resolution of a particular study. Generalizing or transferring results as well
as comparison between different studies is limited (Tanferna et al. 2012; Postlethwaite
and Dennis 2013).

Here, we introduce a new theoretical framework for analyzing the robustness of
movement models to varying resolutions of temporal discretization. In our paper, we
formally define robustness as a specific property of a model. Generally speaking,
we consider a model to be robust if it can be applied validly to movement data with
different temporal resolutions, thus allowing consistent statistical inference. While we
do not require important movement characteristics expressed in model parameters to
be the same across sampling rates, we ask for them to vary systematically in a way that
allows translation of results between resolutions. Because our framework is defined
at the level of the model, it is more general than previous approaches that consider
individual movement characteristics.

Our idea of movement model robustness is related to the formal concept of robust-
ness in statistics,which explicitly acknowledges that statisticalmodels usually simplify
and approximate the processes that generate observations. Robust statistical methods
aim at safeguarding results against misspecified model assumptions (Hampel 1986;
Huber and Ronchetti 2009). Here, in case of movement models, we may consider the
temporal resolution of a model as an assumption. Sometimes, a suitable resolution can
be determined by scale considerations, for example whenmodelling inter-patchmove-
ment at the patch level (Benhamou 2013). If, in contrast, we are interested in the finer
behavioural rules of the inter-patch movement, for example, compared to intra-patch
movement, it may be less clear which resolution to chose because regularly sampled
locations do not necessarily correspond to an individual’s decision points (Turchin
1998). Here, we investigate whether there are movement models that are robust to the
choice of sampling rate. We emphasize, however, that this type of robustness is only
biologically meaningful across a range of resolutions that are all within the scale of
the behaviour of interest.

We present the new framework in terms of random walk models with indepen-
dently and identically distributed steps. Many contemporary movement models have
surpassed these classical random walk models in complexity, e.g. including persis-
tent movement and additional components to describe environmental effects (e.g.,
Rhodes et al. 2005; McClintock et al. 2012). Still, here we focus on basic random
walks to introduce the new concept of robustness of movement models to temporal
discretization and to put it in context with other established ideas in probability theory
and movement ecology. Our aim is to provide the first step towards a rigorous theory
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of robustness of movement models by working out fundamental results at the level
of simple random walks that are analytically tractable. This will provide a basis for
future work including more realistic random walk models. Ultimately, our goal is to
understand how we can use models’ robustness properties to mitigate effects of data
collection rate on statistical inference about movement behaviour and in particular
parameter estimates.

Our paper is organized as follows. In Sect. 2 we describe the set-up of our study,
after which we follow with two introductory example models that illustrate our frame-
work. We then give formal definitions of two types of robustness that vary in their
strength of requirements but also benefits. In Sect. 3, we analyze robustness properties
of one-dimensional models. We present models that are robust, suggest a way to con-
struct robust models from non-robust models and relate robustness to the probabilistic
concept of infinite divisibility. In Sect. 4, we extend results about robustness to two-
dimensional models, in particular models with radially symmetric step densities. Our
framework provides a new systematic, mathematically founded approach to analyze
if, and how, sampling rate of movement paths influences movement parameters and
inference results. Here, we provide a first analysis at the fundamental level of simple
random walks. We conclude our paper by discussing future steps towards application
of the new concept to biologically relevant models.

2 The robustness framework

2.1 Temporal resolution of random walks

Random walks have a long history as animal movement models. They are useful as
a basis for deriving partial-differential equation models for population distributions
(Patlak 1953; Skellam 1951), for building simulation models for moving individuals
(Kaiser 1976; Jones 1977), and for developing metrics that summarize movement
characteristics (Kareiva and Shigesada 1983). Although models have become more
complex to include behavioural mechanisms such as territorial defense (Moorcroft and
Lewis 2006; Potts et al. 2013) or resource selection (Mckenzie et al. 2012; Potts et al.
2014), to describe temporally switching behaviour (Morales et al. 2004; McClintock
et al. 2013), and to account for stochasticity of the measurement process (Patterson
et al. 2008; Breed et al. 2012), random walks remain at the root of many movement
models (Börger et al. 2008; Smouse et al. 2010).

The classic random walk model for movement is a stochastic process {X t , t ∈ N},
where the location X t ∈ R

2 of an organism for each time index t ∈ N is given as a
sum of independently identically distributed (i.i.d.) steps (Klenke 2008). That is,

X t = x0 +
t∑

i=1

Si , (1)

where x0 is the (fixed) start location of the movement path, and Si is the vector, that is
the step, between location X i−1 and X i . Note that here we use S to denote steps and
X to denote locations, which are sums of steps. In the statistical literature, often S is
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Fig. 1 Schematic of locations
and steps between locations for
a an original process and b its
subprocess for n = 2. The
original process consists of steps
Si , whereas the subprocess has
steps S̃i,2, which are sums of the
original steps

(a)

(b)

used for sums of random variables. However, we have chosen our notation according
to the movement context. For a graphical clarification of our notations refer to Fig. 1.
The random walk models an observed movement path, that is a series of locations
x = {x0, x1, x2, . . . }, where xt ∈ R

2, measured at regular time intervals. For some
types of movement data paths can only be sampled irregularly. For example, when
tracking marine mammals, individuals must surface to allow location measurements.
To connect such data to discrete-time random walk models, hierarchical models such
as state-space models can be used (Jonsen et al. 2005; Breed et al. 2012).

As a convenient way for systematically studying varying temporal discretization
of movement data, we can mimic different sampling rates of movement paths via
subsampling. The nth subsample of x consists of every nth location, that is xn =
{x0, xn, x2n, . . . }. As n increases, the temporal resolution of the data becomes coarser.
Note that x1 = x is the original time series. If x is modelled by the process {X t , t ∈
N}, then the subsample x2, which consists of every second location of the original
time series, is correctly described by the subprocess {X2t , t ∈ N}. In general, the
subprocess may have a different probability distribution than the original process.
However, there is a simple relationship between the two processes. For the subprocess
we have X2t = x0 + ∑2t

i=1 Si = x0 + ∑t
i=1 S̃i,2, for steps S̃i,2 = S2i−1 + S2i ;

refer to Fig. 1. Note that X2t is the t-th element in the subprocess {X2t , t ∈ N} and
the 2t-th element in the original process {X t , t ∈ N}. More generally, for an arbitrary
subprocess, we have

Xnt = x0 +
nt∑

i=1

Si = x0 +
t∑

i=1

S̃i,n, (2)
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for the larger steps S̃i,n = ∑n−1
j=0 Sni− j . Therefore, the distribution of Xnt is based

on steps that are themselves sums of steps of the original process. We remind that for
a random walk with i.i.d. steps, all Si have the same distribution, however, their sum
may generally have a different distribution.

If a movement model were robust to changes in temporal resolution, the same
model should be able to describe validly both a path x and its subsample xn . As we
have described above, in a random walk model the distributions of the steps define the
process. If the steps {Si , i ∈ N} and {S̃i,n, i ∈ N} for a range of subsampling indices
n ∈ N can be described by the same probability model, with appropriate adjustment
of model parameters, then we consider the model to be robust to varying temporal
discretization within that range.

2.2 Two illustrative examples

We illustrate the concept of robustness with two simple examples. For simplicity, we
consider one-dimensional models. First, for an example of a robust model, we assume
that all steps Si have identical normal distribution, with zero mean and variance σ 2,
which we denote by Si ∼ N (0, σ 2). Because the model is in one dimension, the
normal distribution models both the distance and direction (right or left) of a step.
A step density centred at zero means that steps to the right and left have the same
probability. Because sums of independent random variables with normal distribution
have again a normal distribution with summed means and variances, it follows that
the location Xt is normally distributed as well, Xt ∼ N (x0, tσ 2). The steps S̃i,2 of
the subsampled process {X2t , t ∈ N} are sums of two normally distributed random
variables and therefore we have S̃i,2 ∼ N (0, 2σ 2) and X2t ∼ N (x0, 2tσ 2). Thus,
the probability distributions that describe the original and the subsampled process are
both normal with the same mean but different variances. However, the variances are
related through a simple linear function. Therefore, we can make inference using the
subsampled data and process and simply divide the estimated variance by 2 to obtain
an estimate of the variance of the original process. Conversely, we can multiply the
variance obtained using the original process by 2 to obtain the valid variance for the
coarser process. This also works analogously for n > 2. Because of this property, the
random walk model with normally distributed steps is robust.

For a counter example of robustness, we consider steps that have Laplace distribu-
tion, which is also termed double-exponential distribution. The Laplace distribution,
similar to the Normal distribution, is symmetric, however it is more peaked and has
slightly heavier tails than the Normal distribution. It commonly serves as a one-
dimensional (or marginal, in two-dimensional models) redistribution kernel in models
for dispersing organisms (Neubert et al. 1995). We assume that steps Si are i.i.d.
Laplace distributed with location parameter zero, i.e. the density is centred at zero,
and scale parameter σ , that is Si ∼ Laplace(0, σ ). Consequently, the location Xt is
distributed as a sum of Laplace distributions. Sums of Laplace distributed random vari-
ables are not as simple or well-known as the previous Normal example. Still, we can
employ characteristic functions to look into this case further. The characteristic func-
tion (ch.f.) of a random variable X is defined by the expectation φX (u) = E(eiuX ).
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Characteristic functions uniquely define distributions. The ch.f. for the above step
distribution is given by

φSi (u) = 1

1 + σ 2u2
. (3)

Characteristic functions have the convenient property that summing independent ran-
dom variables corresponds tomultiplying their characteristic functions (Klenke 2008).
The steps of the subsampled process, S̃i,2 = S2i−1 + S2i , consequently have ch.f.

φS̃i,2
(u) = φSi (u)2 = 1

1 + (
√
2σ)2u2 + σ 4u4

. (4)

This function cannot be expressed as the characteristic function of any Laplace dis-
tribution, which would have to be of the form eiμt (1 + σ 2u2)−1 for some location
parameter μ ∈ R and scale σ > 0. With a bit more work, one can also compare
probability density functions. The steps Si of the original process have the Laplace
density

fSi (s) = 1

2σ
e− |s|

σ . (5)

The density of the sum of two such random variables can be calculated as convolution
of the individual densities,

f S̃i,2(s) =
∫

R

fSi (v) fSi (s − v) dv. (6)

This results in (refer also to Kotz et al. 2001)

f S̃i,2(s) = 1

4σ 2 e
− |s|

σ (σ + |s|), (7)

which we cannot write in form of fSi (s) by transforming the parameters. We conclude
that the step distribution for the subsampled process does not belong to the same family
of distributions as the original process, namely the Laplace family. This means that if
we fit the original model with Laplace distributed steps to both x and x2, the resulting
parameter estimates are not truly comparable. If, however, instead we fit a different
model to x2 that uses densities (7), the parameter σ describes the same quantity as
in the original model. Therefore, the model that has Laplace distributed steps is not
robust against varying temporal resolution; but see Sect. 3.2.

2.3 Formal definition of robustness

Wenow define robustness formally.We have seen above that the step distributions play
an essential role for the robustness of random walk models. In the Laplace example,
the characteristic function has been a convenient tool to analyze step distributions

123



U. E. Schlägel, M. A. Lewis

of random walk models. Therefore, we use them in our definitions of robustness.
For a two-dimensional model, the ch.f. of a step Si ∈ R

2 is φ(u) = E(eiu·Si ) for
u ∈ R

2, where · denotes the scalar product of vectors. For our purpose we highlight
the parameters of a distribution as auxiliary variables of the ch.f. by writing φ(u; θ)

for model parameters θ ∈ Θ .
We provide two definitions of robustness that vary slightly in the strength of their

requirements. In principle, we consider a model to be robust if step distributions of the
subprocesses belong to the same class of distributions as those of the original process.
Because characteristic functions uniquely define distributions, we can formulate this
idea rigorously by requiring the characteristic functions of original and coarser steps
to have the same functional form.

Definition 1 (Semi-robustness) Let φ(u; θ) be the characteristic function of the i.i.d.
steps in a random walk movement model, where θ ∈ Θ is the vector of model para-
meters. The movement model is semi-robust if for every n ∈ N there exists a function
gn : Θ → Θ such that

φ(u; θ)n = φ(u; gn(θ)). (8)

As we have mentioned before, summing independent random variables (here, steps in
a random walk) corresponds to multiplying their respective characteristic functions.
In our random walk models, steps are identically distributed. Therefore, the LHS of
Eq. (8) is the ch.f. of the sum of n steps and therefore defines the distribution for the
steps S̃i,n of themodel for the nth subsample. TheRHSof the equation is the ch.f. of the
steps Si , however with transformed parameters. Therefore, semi-robustness requires
that subsamples of the random walk are defined by the same step distribution up to
a known parameter transformation. The parameter transformation gn is an important
part of the definition, because it allows us to scale up model parameters to a coarser
discretization. Say, our model represents a temporal discretization τ , that is τ is the
time interval between two locations. If our model is semi-robust, we know that it is
also valid for any discretization nτ , n ∈ N, with parameter gn(θ).

If we want to be able to compare results of studies that use different temporal res-
olutions for their models more generally, we also need be able to translate parameters
downwards, that is to a finer discretization. The following definition characterizes
models that can be scaled both upwards and downwards.

Definition 2 (Robustness) A semi-robust movement model is robust if the function
gn in Definition 1 is bijective, that is both one-to-one and onto.

This definition allows scaling upwards just as before. Additionally, we can translate
the parameter θ to a finer scale 1

n τ . The surjectivity of gn guarantees that there exits an
inverse image ψ = g−1

n (θ) ∈ Θ , which is unique by injectivity. Therefore, φ(u;ψ)

defines a valid characteristic function, and by property (8) we have

φ(u;ψ)n = φ(u; gn(ψ)) = φ(u; θ). (9)

This means that there is a valid sub-model for the discretization 1
n τ with parameter

vector ψ .
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The introductory example model with Normally distributed steps is robust. The
transformation for the only model parameter, the standard deviation σ , is gn(σ ) =√
nσ . The second example with Laplace distributed steps is neither robust nor semi-

robust since property (8) is not met. In Sect. 3.2, we will see that it is possible to embed
the Laplace model within an extension so as to make it robust.

3 One-dimensional models

In the following we look further into the question which random walk models are
robust. First, we focus on one-dimensional models, that is random walks on the real
line. These models can play a role in situations where movement is naturally limited,
e.g. movement within a stream or along a river bank. Also, univariate step distributions
arise as marginals of two-dimensional movement- or dispersal kernels; see Sect. 4.2.
After presenting classes of robust models, we describe the relationship of robustness
with the probabilistic concept of infinite divisibility. With this, we hope to deepen the
reader’s understanding of robustness and to set robustness apart from other concepts.

3.1 Robust random walk models

To find robust models, we look for steps with probability distributions that are closed
under summation. Such a property ensures semi-robustness, which is a necessary con-
dition for robustness. Whether a semi-robust model is also robust depends largely on
the parameter space for which the step distribution is well-defined. A straightforward
example is given by distributions, whose ch.f. can be expressed as some function raised
to a power, where the power is a model parameter. In such a case, taking the ch.f. to
the power n simply corresponds to multiplying the power parameter by n. Thus, we
can define a parameter transformation gn that multiplies the power parameter by n,
while all other parameters remain unaffected. We obtain semi-robustness as long as
the product of power parameter and n still belongs to the model parameter space.
For robustness, we additionally require that the parameter transformation is invertible,
which means that we need to be able to divide the power parameter by any n ∈ N and
still remainwithin the valid parameter space. Therefore, the definition of the parameter
space of a distribution is key to whether a model is semi-robust or robust.

Theorem 1 Consider a one-dimensional random walk movement model with i.i.d.
steps that have characteristic function of the form φ(u; θ) = h(u; θ1)

θ2 for some
function h : R × Θ1 → C and model parameters θ = (θ1, θ2) ∈ Θ1 × Θ2. If the
parameter space is such that nΘ2 = {nθ2; θ2 ∈ Θ2} ⊂ Θ2 for all n ∈ N, the model is
semi-robust. If additionally 1

nΘ2 ⊂ Θ2 for all n ∈ N, then the model is robust.

Proof We define the parameter transformation as gn(θ) = gn(θ1, θ2) = (θ1, nθ2) ∈
Θ2 × Θ2. Then, trivially, we have φ(u; θ)n = h(u; θ1)

nθ2 = φ(u; gn(θ)), and semi-
robustness follows. Let θ2

n ∈ Θ2 for all n ∈ N and all θ2 ∈ Θ2. Then for each θ we

have a unique inverse image g−1
n (θ) = (θ1,

θ2
n ), which lies within the valid parameter

range. Therefore, the model is robust.
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For such models, the parameter transformation only affects the parameter that con-
stitutes the power in the ch.f. For example, consider i.i.d. steps Si that have gamma
distribution with shape κ > 0 and scale σ > 0. Note that the support of the Gamma
density is only the positive real line, so movement steps are always into the same
direction (to the right). The gamma distribution has the well-known property that
a sum of independent Gamma random variables, all having the same scale para-
meter, again has a gamma distribution (Casella and Berger 2002). The ch.f. of the
gamma distribution is φ(u; κ, σ ) = (1 − σ iu)−κ . Therefore, we directly obtain
φ(u; κ, σ )n = (1 − σ iu)−nκ = φ(u; nκ, σ ). Hence, the summation affects the shape
parameter, andwehave gn(κ, σ ) = (nκ, σ ). Because the gammadistribution is defined
for all positive shapes κ ∈ R

+, the transformation gn is invertible, and we conclude
that steps with gamma distribution lead to robust models.

The chi-squared distribution is a special case of the gamma distribution for a scale
σ = 2 and shape κ = k

2 for degrees of freedom k ∈ N. The ch.f. is

φ(u; k) = (1 − 2iu)−
k
2 . (10)

The nth power of φ is still a ch.f. of a chi-squared distribution with degrees of freedom
nk ∈ N, and therefore a model with chi-squared steps is semi-robust. However, for an
arbitrary k ∈ N, the fraction k

n is a rational but not necessarily a natural number. Thus,
the second condition of Theorem 1 is not satisfied. For more examples of distributions
that meet the conditions of Theorem 1, see Table 1. Note that there are also discrete
distributions that belong to the group of distributions described in the theorem (e.g.
the binomial, Poisson and negative-binomial).

Another class of distributions that are suitable as step distributions for robustmodels
is given by the family of stable distributions (Samorodnitsky 1994;Nolan 1997;Klenke
2008). The stable distributions comprise a four-parameter family of distributions,
which we denote by S (α, β, σ, μ), with index of stability 0 < α ≤ 2, skewness
−1 ≤ β ≤ 1, scale σ > 0 and location μ ∈ R. Note that the scale parameter does not
necessarily correspond to the variance of the distribution, which is in fact infinite for
most stable distributions. Only for certain values of α and β, do stable distributions
have closed-form density functions. However, for any parameter values, we can define
a stable distribution uniquely by its characteristic function. There are multiple ways
to parameterize stable distributions, which differ slightly in the interpretation of the
parameters σ and μ. Here we use the form of the ch.f. provided in Nolan (1997),

φ(u;α, β, σ, μ) =
{
exp

[
iμu − σα|u|α (

1 − iβ tan(πα
2 ) sign(u)

)]
, α �= 1

exp
[
iμu − σ |u| (1 + iβ sign(u) ln |u|)] , α = 1.

(11)

The most famous example of a stable distribution is the Normal distribution for α = 2.
Using the above parameterization of the stable distribution, the mean and variance of
the Normal distribution are μ and 2σ 2, respectively. For α = 2, the term including
the parameter β vanishes. For α = 1 and β = 0, the Cauchy distribution is another
well-known case, for which a closed-form density is known. While the Normal and
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Cauchy distribution are symmetric, the Lévy distribution for α = 1
2 and β = 1 is an

example of a stable distribution with skewed density function (Samorodnitsky 1994).

Theorem 2 A one-dimensional random walk movement model with i.i.d. steps is
robust if steps are distributed according to the stable law S (α, β, σ, μ), i.e. have
characteristic function (11).

Proof We can easily verify that the ch.f. of the stable distribution satisfies property (8).
We have

φ(u;α, β, σ, μ)n =
{
exp

[
i(nμ)u − (n

1
α σ )α|u|α (

1 − iβ tan(πα
2 ) sign(u)

)]
, α �=1

exp
[
i(nμ)u − (nσ)|u| (1 + iβ sign(u) ln |u|)] , α=1.

(12)

Therefore, we choose gn(α, β, σ, μ) = (α, β, n
1
α σ, nμ). It is easy to see that gn is a

bijection of the parameter space, leaving α and β unchanged and being monotone on
R

+ ×R in the last two arguments. Therefore, stable steps distributions lead to robust
models. ��

We have just seen that if we sum n steps, each having stable distribution Si ∼
S (α, β, σ, μ), the sum is again stable according to

S̃i,n ∼ S (α, β, n
1
α σ, nμ). (13)

In fact, stable distributions are a family of distributions that have been constructed to
have this special summation property. Equivalently to defining a stable distribution by
its characteristic function, we can also say a random variable S has stable distribution
if the sum of independent copies of S is a scaled and shifted version of S, that is if we
have

n∑

i=1

S
d= anS + bn (14)

for some an > 0, bn ∈ R, where
d= stands for equality in distribution (Samorodnitsky

1994; Kotz et al. 2001). In fact, the only choice for an is an = n
1
α (Samorodnitsky

1994). Because the location Xt is a sum of steps, Xt = x0 +∑t
i=1 Si , the distribution

of the location Xt is also stable,

Xt ∼ S (α, β, t
1
α σ, x0 + tμ), (15)

for any t ∈ N. The analogue holds for the locations of the subsampled process {Xnt , t ∈
N},

Xnt ∼ S (α, β, n
1
α t

1
α σ, x0 + ntμ). (16)
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The parameters α and β remain unchanged under summation. The parameter β deter-
mines skewness, with β = 0 corresponding to a symmetric density, and therefore a
stable distributionS (α, 0, ·, ·) is also termed α-symmetric stable distribution.

A special case is given by models that have starting location x0 = 0 and step
distribution S ∼ S (α, 0, σ, 0). These specific stable distributions are symmetric with
centre at zero, and they lead to

Xt ∼ S (α, 0, t
1
α σ, 0) (17)

and

Xnt ∼ S (α, 0, n
1
α t

1
α σ, 0). (18)

Therefore, Xnt is a scaled version of Xt , that is we have

Xnt
d= n

1
α Xt , (19)

which means that the random walk {Xt , t ∈ N} is self-similar (Samorodnitsky 1994).
Also, the probability density function of the step distribution, pS(s), is related to

the density of the summed steps S̃i,n via a scaling property (see Appendix 1 or refer
to Klafter et al. 1995),

pS̃i,n (s) = 1

n
1
α

pSi

(
s

n
1
α

)
. (20)

This specific random walk is called a Lévy flight (Klafter et al. 1995). Note that this
(original) definition of a Lévy flight is different from a Lévy walk. In contrast to
Lévy flights, where jumps between locations occur instantaneously or during a fixed
time interval, a Lévy walk is based on a continuous-time random walk, describing
the movement of an organism at constant speed between reorientation events (Klafter
et al. 1995). In this description, the emphasis lies on waiting times, which follow a
scaling law. In the movement literature, the two terms are often used interchangeably
(Reynolds and Rhodes 2009; James et al. 2011). Note that because of the different
assumptions, data are processed slightly different in a Lévy walk analysis, where
usually steps (as we have defined them here) are combined as “moves” as long as
directional changes between them remain under a certain threshold (Plank et al. 2013).
This type of post-processing has recently been mentioned as possibly problematic
(Benhamou 2013), and it is not suitable for our framework.

Although stable step distributions are predestined to lead to robust models, robust-
ness is a more general concept. In terms of the characteristic function φ of S, the
summation property (14) is φ(u)n = eiubnφ(anu), or simply φ(u)n ∝ φ(anu). In
comparison, the robustness property (8) is a weaker condition. It means that the sum
of n i.i.d. steps has the same distribution as a single step up to adjusted parameter val-
ues according to a known function gn . In the case where steps have stable distribution,
the function gn affects the scale and location parameter of a distribution. However,
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distributions may have other types of parameters that can be affected. For example,
in the above case of Gamma distributed steps, summation of steps results in a mod-
ified shape parameter. In contrast, scaling a Gamma distributed random variable by
a constant c leads to a gamma distribution with same shape κ but adjusted scale cσ .
Therefore, the gamma distribution is not stable, and the resulting random walk does
not exhibit self-similarity. However, the random walk model with Gamma distributed
steps is robust.

3.2 Robust model extensions

As we have seen in Theorem 1, a step distribution having ch.f. that is the power of
some function leads to a semi-robust or robust model, depending on the definition of
the parameter space. This leads to the idea that we can obtain robustness by embed-
ding a distribution into a larger family of distributions by adding an additional power
parameter. Starting with a ch.f. φ(u; θ), θ ∈ Θ , we can augment the model parameters
by k ∈ N, that is we define a new parameter vector θ̄ = (θ, k) ∈ Θ ×N. We can then
define a new distribution via the ch.f. ψ(u; θ̄) = φ(u; θ)k . For k ∈ N we know that
ψ is again a ch.f., because by construction it is the ch.f. of a distribution of a sum of
k independent random variables. Because nk ∈ N for all n, k ∈ N, and according to
Theorem 1, a step distribution with ch.f. ψ(u; θ̄), where k is simply one of the model
parameters, leads to a semi-robust random walk model with gn(θ, k) = (θ, nk). To
go a step further and construct a robust model, the range of the parameter k would
need to include positive rational numbers. However, for k �= N, we have in general no
guarantee that ψ is again the ch.f. of a distribution.

As an illustration of these ideas, consider the Laplace distribution. The Laplace
distribution with mean zero and scale parameter σ > 0 has ch.f.

φ(u; σ) = 1

1 + σ 2u2
. (21)

We have seen above that amodel with Laplace distributed steps is not robust. However,
we can define a new family of distributions via the ch.f.

ψ(u; σ, k) = 1

(1 + σ 2u2)k
, (22)

where k ∈ N. This is the ch.f. of the sum of k independent Laplace random variables
and therefore a valid ch.f. Using this distribution for steps and treating k as a regular
model parameter, we have constructed a semi-robust model. In this particular case,
where we extend the Laplace distribution, the function ψ in Eq. (22) is also a valid
ch.f. for any non-negative, real k ∈ R≥0 (Kotz et al. 2001). It corresponds to a gen-
eralized asymmetric Laplace distribution with location parameter zero and symmetry
parameter being zero (and hence being symmetric); see also Table 1. This generalized
Laplace distribution is not widely known, however, it has found several applications.
In particular, it has been used in financial modelling, where it is also known as variance
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gamma model (Madan and Seneta 1990; Seneta 2004). A movement model with step
distribution determined by the ch.f. (22) for k ∈ R≥0 is robust.

For applications in which likelihood functions play an important role, e.g. for sta-
tistical inference, a remaining question is whether we can find the corresponding
probability density function for the ch.f. ψ . In principle, the probability density func-
tion of a distribution can be calculated as inverse Fourier transform of the characteristic
function (Klenke 2008). Alternatively, for k ∈ N, the density of ψ can be obtained as
the convolution of the k single step densities. Both methods can be difficult or may
not result in a closed-form density. However, for the above example of the generalized
asymmetric Laplace distribution, a density function is available in terms of a Bessel
function (Kotz et al. 2001). In the symmetric case with location parameter zero, the
density that corresponds to the ch.f. φ in Eq. (22) is

f (x) = 1√
π(k − 1)!2

−k+ 1
2 σ−k− 1

2 |x |k− 1
2 Kk− 1

2

( |x |
σ

)
, (23)

where Kk− 1
2
(x) is a modified Bessel function of the third kind. This formula is valid

for any k ≥ 0. For the case where we restrict k to the non-negative integers, k ∈ N0,
the Bessel function Kk− 1

2
(x) has a closed form (Kotz et al. 2001, Appendix 2), and

we can alternatively write

f (x) = e− |x |
σ

σ (k − 1)! 2k
k−1∑

j=0

(k − 1 + j)!
(k − 1 − j)! j ! ·

( |x |
σ

)k−1− j

2 j
. (24)

This density function can be used for likelihood-based inference, and both σ and k
can be estimated simultaneously. While the new parameter k may take the role of a
nuisance parameter, it allows the distribution to be more flexible. Most importantly,
estimates of σ become comparable across different temporal resolutions; see Fig. 2.

3.3 Robustness and infinite divisibility

Robustness is related to the probabilistic concept of infinite divisibility.Roughly speak-
ing, a distribution is infinitely divisible if it can be expressed as the distribution of a
sum of independent random variables. More precisely, in terms of the characteristic
function φ of a distribution, φ is infinitely divisible if for every n ∈ N, there exists
another ch.f. φn such that φ(u) = φn(u)n (Steutel and Van Harn 2004; Klenke 2008).
It is important that φn is not just any function but the ch.f. of a random variable. An
example of an infinitely divisible distribution is the Normal distribution with mean
μ ∈ R and standard deviation σ ∈ R

+. Its ch.f. is

φ(u;μ, σ) = eiμu− 1
2 σ 2u2 . (25)
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(a)

(b)

(d)

(f)

(h)

(c)

(e)

(g)

(i)

Fig. 2 Inference results when using the Laplace model versus the generalized Laplace model. a Simulated
1D-random walk with Laplace distributed steps with mean zero and scale σ = 1. b Excerpt of panel a for
time steps 1 to 25. c Histogram of realized steps of the random walk, fitted with a Laplace distribution with
mean zero. The estimate of the scale σ is denoted by σ̂ . d, f, h We subsampled the random walk, taking
every 4th location. The panels show the original random walk (in grey) and the subsample (in black). We
obtain different subsamples, depending on the starting location of the subsampling procedure. The three
panels start the subsampling at x1, x2, and x3, respectively. Each subsampled path is 1000 time steps long.
e, g, i Histograms of realized steps of the subsampled paths. Each histogram corresponds to the subsample
to its left. Steps were fitted with a Laplace distribution (dashed purple line) and with a generalized Laplace
distribution as given inEq. (24) (red solid line). The generalizedLaplacemodel accounts for the subsampling
with its additional parameter k (here k = 4) and is thus the correct model. When fitted to the subsampled
randomwalks, k was estimated simultaneously with σ . The estimate of k varies for the different subsamples,
reflecting the stochasticity of the data, but it is always close to 4.When using the generalized Laplacemodel,
estimates of the scale σ are valid estimates for the scale of the original random walk as well. In contrast, the
scale estimate from the simple Laplace model (given in parenthesis) cannot validly represent the original
scale and naturally overestimates σ (color figure online)
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We can chooseφn(u) = φ(u; μ
n , σ√

n
), which is the ch.f. of another Normal distribution

withmean μ
n ∈ R and standard deviation σ√

n
∈ R

+. In general, many of the commonly
known distributions are infinitely divisible.

Both concepts, robustness and infinite divisibility, are linked to sums of random
variables. However, the two concepts are not the same. The Laplace distribution is
infinitely divisible, however, the factors of the ch.f. do not again correspond to Laplace
distributions. Instead, the ch.f. of a zero-mean Laplace distribution can be factored as
follows (Kotz et al. 2001),

φ(u) = 1

1 + σ 2u2
=

[(
1

1 − iσu

) 1
n
(

1

1 + iσu

) 1
n
]n

= φn(u)n . (26)

Each factor φn is the ch.f. of a random variable that is a difference between two i.i.d.
Gamma random variables (Kotz et al. 2001). This second example highlights that
a distribution can be infinitely divisible but, as a step distribution, does not lead to a
robust model. This is due to the fact that infinite divisibility only requires the existence
of random variables that sum up to the variable in question. Robustness additionally
requires that the summands belong to the same distribution as the original, only with
modified parameter values. On the other hand, the converse is true and every robust
random walk model of the form that we consider here must have infinitely divisible
step distribution.

Theorem 3 Let Si , i ∈ N, denote the i.i.d. steps of a random walk movement model. If
the step distribution leads to a robust model, then Si is infinitely divisible. The converse
is not true, that is not every infinitely divisible step distribution leads to a robust model.

Proof Let φ(u; θ), with θ ∈ Θ , be the ch.f. of a single step Si . Let n ∈ N, and let gn
be the parameter transformation given by robustness. Because gn is bijective, we can
define a unique ψ := g−1

n (θ) ∈ Θ and choose φn(u) := φ(u;ψ). It follows that

φn(u)n = φ(u;ψ)n = φ(u; gn(ψ)) = φ(u; gn(g−1
n (θ))) = φ(u; θ), (27)

which shows infinite divisibility. As a counter example for the converse, we have seen
above that the Laplace distribution is infinitely divisible but a model with Laplace
distributed steps is not robust. ��

In the preceding proof, the bijectivity, and in particular the surjectivity, of the
transform gn is crucial for the existence of φn . Therefore, semi-robustness is not a
sufficient criterion for infinite divisibility. Consider the Binomial distribution, which
is discrete and not typically used as distribution for movement steps. Still, it serves as a
counter example for a distribution that is not infinitely divisible, yet as step distribution
leads to a semi-robustmodel. For its ch.f. isφ(u; p, n) = (1− p+ peiu)n for p ∈ [0, 1]
and n ∈ N, and therefore meets the first, but not the second, condition of Theorem 1.
On the other hand, as a distribution with bounded support, namely {k ∈ N, k ≤ n}, it
is not infinitely divisible (Steutel and Van Harn 2004).
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Even if a model both is semi-robust and has infinitely divisible step distribution,
it does not follow that it is robust. Consider the model with Chi-squared distributed
steps. As we have seen in Sect. 3.1, this model is semi-robust but not robust. Still,
the chi-squared distribution is a special case of the gamma distribution and thus infi-
nitely divisible; compare Table 1. The reason for the model not being robust is that
the summands, which a Chi-squared random variable can be decomposed into, are
generally Gamma and not again Chi-squared random variables. This examples high-
lights that the definition of the model parameter space is an important consideration
for robustness. If instead of the chi-squared distribution, which is embedded in the
gamma distribution, we directly use the gamma distribution as probability model for
steps, we immediately obtain a robust model.

We have used the same idea in Sect. 3.2 to embed the Laplace distribution within
the more comprehensive generalized Laplace distribution. Although the Laplace dis-
tribution is infinitely divisible, Laplace distributed steps lead to neither a robust nor a
semi-robust model. If we define the extension described by the ch.f. (22) for k ∈ N,
we obtain a random walk model that is semi-robust. If we go even further and define
the extension for k ∈ R≥0, the resulting model is robust.

From these considerations we can conclude that robust random walk models lie
within the intersection of semi-robust models and models with infinitely divisible
steps, however, they do not constitute the entire intersection; see Fig. 3.

4 Two-dimensional models

4.1 Radially-symmetric step densities

Many applications of movement modelling, especially those that consider movement
of terrestrial animals, require the use of two-dimensional models. We then often
describe steps by their length and bearing, which corresponds to describing a vector
in polar coordinates. Accordingly, instead of assigning a distribution to steps directly,
we compose step distributions of a step length distribution and a distribution for the
bearing. From these, we can obtain a step distribution (i.e. a distribution for the two-

Fig. 3 Graphic depiction of the
relationships between
semi-robust and robust models
and models with infinitely
divisible step distributions. Each
section contains examples from
the text for step distributions that
lead to the type of model
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dimensional vector) by taking into account the transformation from polar coordinate

formulation to euclidean space. Let S =
(
S1
S2

)
∈ R

2 be the two-dimensional step.

Then we denote by

R =
√
S21 + S22 (28)

the step length, which is the length of the vector in polar coordinates, and let pR(r)
be the step length distribution. Let pΓ (γ ) denote the distribution of the bearing. Note
that, in accordance with common usage, we use capital letters for random variables
and small letters for their realizations. The transformation between the two coordinate
systems is given by S1 = R cosΓ and S2 = R sinΓ . Assuming that step length and
bearing distributions are independent, we obtain as step density

pS1,S2(s1, s2) = 1√
s21 + s22

· pR
(√

s21 + s22

)
· pΓ (Arg(s1 + is2)), (29)

where Arg(·) denotes the principle argument of a complex number. The factor

(

√
s21 + s22 )

−1 is due to the coordinate system transformation.
A classic assumption for simple random walk models is that bearings have uniform

distribution on the interval (−π, π ], which leads to a bearing density pΓ (γ ) = 1
2π

(Bartumeus et al. 2005; Smouse et al. 2010; James et al. 2011). Ifmovement is assumed
to be persistent in its direction, we may release this assumption and use a von Mises
or wrapped Cauchy distribution instead. In case of a correlated random walk, a non-
uniform bearing distribution would be centred around the bearing of the previous step.
In a biased randomwalk, the bearing distributionwould have a (possibly time-varying)
location parameter that represents a global tendency towards a certain direction or goal
location (Morales et al. 2004;McClintock et al. 2013; Benhamou 2013). Here, we only
consider models with uniform bearing distribution.

And therefore step densities of the form

pS1,S2(s1, s2) = 1

2π
√
s21 + s22

· pR
(√

s21 + s22

)
. (30)

This density function is radially symmetric, and we can simply write

pS1,S2(r) = 1

2πr
pR(r) (31)

for r =
√
s21 + s22 . Note that we distinguish the radius density pR and radially-

symmetric step density pS1,S2 via the subscript.
The radial symmetry of the density (30) enables us to compute its ch.f. via a Hankel

transform. The Hankel transform of order ν of a function f (r) for r ≥ 0 is given by

123



U. E. Schlägel, M. A. Lewis

the integral

Hν{ f }(u) =
∫ ∞

0
r f (r)Jν(ru) dr, (32)

where Jν denotes the Bessel function of the first kind of order ν (Piessens 2000). The
ch.f. of a two-dimensional random vector with joint density (31) can be calculated as

φ(u) = 2π H0{pS1,S2}(‖u‖). (33)

For details about the calculation, see Appendix 2. Because φ only depends on the
norm of u and hence is radially symmetric as well, we also use the notation φ(‖u‖).
Hankel transforms have been computed for a variety of functions, which in the fol-
lowing simplifies our analysis of characteristic functions for two-dimensional step
distributions.

4.2 Robust two-dimensional models

In the following, we look for robustness among two-dimensional models. A direct
way of verifying robustness is via the two-dimensional ch.f. according to Definition 1
or 2. In the case where the step distribution has a radially symmetric density function,
it depends on the step distribution pS1,S2(r) whether the Hankel transform in for-
mula (33) can be readily obtained or not. Alternatively, we can draw on our previous
results for one-dimensional models.

Theorem 4 Consider a random walk model with two-dimensional steps that have
radially symmetric density of the form (30). If the marginal step distribution, given by
the density pS1(s1) = ∫ ∞

−∞ pS1,S2(s1, s2) ds2, leads to a (semi-) robust model in one
dimension, then the two-dimensional model is (semi-) robust as well.

Proof Let φ(‖u‖; θ) denote the radially symmetric ch.f. of the two-dimensional steps,
where θ ∈ Θ are the model parameters. The ch.f. of the marginal density is

∫ ∞

−∞
eiu1s1 pS1(s1) ds1 =

∫ ∞

−∞

∫ ∞

−∞
eiu1s1 pS1,S2(s1, s2) ds1 ds2

= φ(‖u‖; θ)
∣∣
u2=0 = φ(|u1|; θ) =: φSi (u1; θ) (34)

Let n ∈ N. By assumption, there exists a function gn such that

φSi (u1; θ)n = φSi (u1; gn(θ)). (35)

Because of the previous calculations, we also have φ(|u1|; θ)n = φ(|u1|; gn(θ)).
Replacing u1 by ‖u‖ yields semi-robustness for the two-dimensional model. The
parameter transformation is the same for the two-dimensional and the marginal one-
dimensional model, therefore if the one-dimensional model is robust, the same holds
for the two-dimensional one. ��
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With this result, we have established a link between one- and two-dimensional mod-
els. The correspondence of the characteristic functions given in Eq. (34) allows us to
compute the ch.f. of the radially symmetric two-dimensional model directly from the
ch.f. of the one-dimensional model, and vice versa. Whether it is easier to obtain
the two-dimensional ch.f. via the Hankel transform of the two-dimensional den-
sity or via the ch.f. of the one-dimensional marginal depends on which of the two
densities is available. From the two-dimensional ch.f., in turn, we can calculate the
two-dimensional, radially symmetric step density via an inverse Hankel transform,
which is self-reciprocal.

To demonstrate these relationships, we now present three example models and their
robustness properties.

Example 1 (Exponential step length) A common step length distribution used for
movement analyses is the exponential distribution (Smouse et al. 2010; DeMars et al.
2013), which has density pR(r) = 1

λ
e− r

λ . Using this in the step density (31), we
obtain

pS1,S2(r) = 1

2πλr
e− r

λ . (36)

The Hankel transform of order zero is given by H0{pS1,S2}(u) = 1
2π (1 + λ2u2)− 1

2

(Piessens 2000), and thus the ch.f. is

φ(‖u‖; λ) = 1√
1 + λ2‖u‖2 (37)

From this, we can already see that the exponential step length model, where λ > 0
is the only parameter, is neither robust nor semi-robust. The marginal of the density
pS1,S2 is

pS1(s1) = 1

λπ
K0

( |s1|
λ

)
, (38)

where K0 denotes the Bessel function of the second kind of order zero. The ch.f.
of the marginal is φ(u; λ) = (1 + λ2u2)− 1

2 . This is in fact the ch.f. of a generalized
(asymmetric)Laplace distributionwith location and asymmetry parameters being zero,
and with scale λ and power k = 1

2 , which we have seen before to be robust; compare
Sect. 3.2 and Table 1. Therefore, if we embed the exponential step length model in an
extended model with step characteristic function

φ(‖u‖; λ, k) = 1

(1 + λ2‖u‖2)k , (39)

for k ∈ R≥0, we obtain a robust model with the two parameters λ > 0 and k ∈ R≥0. In
the one-dimensional case, we could obtain the density from the ch.f. (22) via an inverse
Fourier transform. However, the two-dimensional step density needs to be computed
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from (39) as an inverse Hankel transform. Unfortunately, the inverse Hankel transform
of order zero of the function (39) is not readily available.

Example 2 (Heavy-tailed step length distribution) In one dimension, we have seen
that stable step distributions lead to robust models. An example of a stable distri-
bution with closed-form density function is the Cauchy distribution. According to
Theorem 4, we can therefore construct a robust two-dimensional model by finding
the two-dimensional density (31) that has the Cauchy density as marginal. We can
achieve this via the identity of characteristic functions established in (34). From the
ch.f. of the Cauchy distribution, we obtain a corresponding two-dimensional ch.f.
φ(‖u‖; σ) = e−σ‖u‖. Applying an inverse Hankel transform according to the iden-
tity (33), we obtain (Piessens 2000)

pS1,S2(r) = σ

2π(σ 2 + r2)
3
2

. (40)

According to (31), this results in a step length density for the two-dimensional models
as follows

pR(r) = σ r

(σ 2 + r2)
3
2

. (41)

The variance does not exist for this density, and the density is heavy-tailed. More
precisely, the tail is of order 1

r2
, that is we have

σ r

(σ 2 + r2)
3
2

= O

(
1

r2

)
, (42)

as r → ∞. We will later see that the step distribution in this example is a special case
of a bivariate stable distribution. Because of its relation with the univariate Cauchy, it
is also known as bivariate (isotropic) Cauchy (Achim and Kuruoglu 2005; Nadarajah
and Kotz 2007).

Example 3 (Normally distributed steps, or Rayleigh step length distribution) TheNor-
mal distribution is another special case of a stable distribution. Its radially symmetric
two-dimensional version with mean zero is the bivariate Normal distribution with
covariance matrix

(
σ 2 0
0 σ 2

)
, having density

pS1,S2(r) = 1

2πσ 2 e
− r2

2σ2 , (43)

and ch.f. φ(‖u‖; σ) = e− 1
2 σ‖u‖2 . The corresponding step length distribution with

density

pR(r) = r

σ 2 e
− r2

2σ2 (44)
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is a Rayleigh distribution with scale parameter σ > 0. As we can easily see from the
ch.f. and also via Theorem 4, this model with Normally distributed steps is robust.

In the latter two examples, the step distributions are special cases of bivariate stable
distributions. Analogously to one-dimension, an α-stable random vector S ∈ R

2,
0 < α ≤ 0, by construction has the property

n∑

i=1

S
d= n

1
α S + bn (45)

for some bn ∈ R
2 (Samorodnitsky 1994). If S is elliptically contoured, its ch.f. is

E
(
eiu·S) = exp

(
iu · μ − (uTΣu)

α
2

)
(46)

for location vector μ ∈ R
2 and positive definite shape matrix Σ (Nolan 2013). From

this form of the ch.f., we can easily see that the nth power is again the ch.f. of an

α-stable random vector, with location vector nμ and shape matrix n
2
α Σ . Therefore,

we immediately obtain the following theorem.

Theorem 5 A two-dimensional random walk model with elliptically contoured steps
S that have bivariate stable distribution, i.e. have ch.f. (46), is robust. ��
The bivariate Normal distribution with mean μ and a general covariance matrix

Σ =
(

σ 2
1 ρσ1σ2

ρσ1σ2 σ 2
2

)
, (47)

where ρ is the correlation, is an example of such a bivariate stable distribution for
α = 2. If S is not only elliptically contoured but even radially symmetric with location
μ = 0, the ch.f. (46) simplifies to

φ(‖u‖;α, σ ) = e−σα‖u‖α

, (48)

for σ > 0. Examples 2 and 3 were special cases for α = 1 and α = 2, respectively.
As in the univariate case, closed-form expressions for the density of bivariate stable

distributions are available only for some special cases, e.g. the examples we have
presented above. However, there are results that allow simulation of random variables
with stable distributions. For an α-stable, radially symmetric stable random vector S,
we have

S
d= √

AT U, (49)

where U is a random vector with uniform distribution on the unit circle, T is a Chi-
squared randomvariablewith degrees of freedom2, and A is a univariate stable random

variable, A ∼ S (α
2 , 1, 2σ 2(cos πα

4 )
2
α , 0) (Nolan 2013). Thus, to obtain a bivariate
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stable random vector, it is enough to generate a univariate stable random variable.
For this, an algorithm is available (Weron 1996), which has been implemented in
the R package ‘stabledist’ (Wuertz and Maechler 2013). This package also provides
numerical calculations of density and cumulative distribution functions.

5 Discussion

We presented a new way of classifying movement models according to their robust-
ness against changes in temporal discretization. After providing a formal definition
for movement model’s robustness, we explored which models have this property. Our
definition emphasizes a systematic transformation of model parameters between tem-
poral resolutions. This ensures that, if a model is robust, we can fit it to movement data
with varying time intervals between locations, and we know how to translate model
parameters between resolutions. Conversely, if a model is not robust, any results we
derive from it are tied to its particular temporal resolution, and thus comparison of
studies is difficult if they use data obtained at different sampling rates.

The question of robustness may already arise at a fundamental level when interfac-
ing models with data. If a model is not robust, then it cannot use data with a particular
temporal resolution to make inferences about movement behaviours at higher and
lower resolutions. This is of particular concern in movement ecology, because sam-
pling schemes for animal movement data are often subject to logistical constraints.
For example, limited battery life of GPS devices often leads to lower sampling rates
in favour of longer total time spans. The resolutions thus imposed on data may be
very different than those for behavioural or ecological questions about movement. If a
model is not robust, then it may still be semi-robust, whichmeans that inference can be
made at lower but not at higher resolution. Because the conditions for robustness and
semi-robustness are rather stringent, it appears that many existing movement models
may fail in this regard.

Previous approaches to the problem have been empirical or based on simulations.
Several studies usedfine-scalemovement datawith sampling intervals of a fewminutes
(Pépin et al. 2004; Postlethwaite and Dennis 2013) or even a few seconds (Ryan et al.
2004). These data were subsampled at various scales to obtain empirical relationships
between the sampling interval and measured or inferred movement parameters. Such
investigations have demonstrated that the sampling interval can have a strong effect
on results from movement analyses. However, each of these studies is based on a
specific species within a particular environment, and it is unclear whether the obtained
relationships and possible correction factors can be transferred to other species and
systems. Also, fine-scale movement data is rarely available, and therefore we need a
more general method that relates sampling rates to movement parameters.

As an alternative to using very fine movement data, another approach has been
to simulate synthetic data from movement models, such as correlated random walks,
and to subsample these. Movement characteristics, such as apparent angular deviation
and apparent speed, were then calculated for varying discretization of the simulated
movement paths to establish relationships, which can be used to derive discretization-
independentmeasures such as sinuosity (Bovet andBenhamou 1988; Benhamou 2004;
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Codling and Hill 2005; Rosser et al. 2013). In this approach, the focus lies on pre-
servingmovement characteristics across varying resolution. In contrast, our robustness
definitions operate at the level of the model. However, if a model is robust, this implies
that model parameters follow a relationship with the sampling interval. The parameter
transformation gn in our robustness definition takes a similar role as the relationship
between, e.g. angular deviation and sampling interval in Codling and Hill (2005).

In our investigations, we found that robustness is a rather strong condition for a
model. This is in line with previous empirical results that highlight the sensitivity of
movement characteristics to the sampling interval. For one-dimensional models, we
encountered two groups of step distributions that lead to robustness. First, Theorem 1
established robustness for distributionswhose characteristic function is a simple power
function. Among the common distributions, those that meet this condition have sup-
port R≥0 and therefore only allow steps into positive direction. Such models can be
applicable in situations where movement experiences external forces, such as move-
ment within strong water currents (Luschi et al. 2003) or wind-driven dispersal (de la
Giroday et al. 2011). The second class of step distributions that lead to robust models
are the stable distributions. If steps haveα-symmetric stable distributionS (α, 0, σ, 0),
the resulting random walk is a Lévy flight (Klafter et al. 1995). In our analysis of
two-dimensional models, we found few robust models. It is, again, mainly the sta-
ble distributions that constitute examples of robust models. Stable distributions are
fat-tailed and do not have second (and higher) moments, the Normal distribution for
α = 2 being the only exception. To circumvent this problem, the related Lévy walk
was introduced (Klafter et al. 1995).

On the one hand, Lévy walks may be attractive models because of their scale-
invariance and optimality in certain foraging situations (Viswanathan et al. 1999). On
the other hand, it is highly debated whether Lévy walks are suitable models for move-
ment and fit empirical data (Benhamou 2007; James et al. 2011; Edwards 2011; Pyke
2015). A major point of controversy arises from the difficulty of inferring processes
frompatterns.Althoughmovement patternsmayfitLévywalks, the underlying process
does not necessarily need to be a Lévy walk but may be due to more complex behav-
iour (Benhamou 2007; Plank et al. 2013). Interestingly, the risk of misidentifying a
(composite) correlated random walk as Lévy walk is strongly affected by the data
sampling scheme and whether higher dimensional data is projected on a lower dimen-
sion (Plank and Codling 2009; Codling and Plank 2011). The debate on Lévy walks
further concerns statistical methods that are used to detect Lévy walk behaviour in
data (White et al. 2008; Edwards 2011). Even the application of Lévy walks within
optimal foraging theory as Lévy foraging hypothesis has been met with scepticism
(Pyke 2015).

In our paper, we are merely interested in the question if there are models that
are robust to changes in sampling rates, and which models these are. Because of
the complexity of the issue, we here concentrated on investigating this question for
basic random walks. Because we assume that our random walks have i.i.d. steps, this
excludes correlated random walks, in which the direction of a step depends on the
direction of the previous step. We restrict our analysis of two-dimensional models fur-
ther to radially symmetric step densities, which also excludes biased random walks.
Even among these rather simple models, we found few that are robust. This foreshad-
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ows that robustness may be rare, if existent at all, among more complex models. But
many contemporary models include forms of behavioural mechanisms beyond the
mere random walk and will likely continue to become more sophisticated (Holyoak
et al. 2008; Smouse et al. 2010; Fagan et al. 2013). This means that most analyses of
movement data to date are restricted to the temporal resolution of each study, limit-
ing extrapolation of results and comparison between studies. Here, we have proposed
a new fundament for analyzing movement models’ robustness to varying sampling
rates. Our analysis of simple random walks serves to illustrate the new framework and
to provide a first step towards a mathematical rigorous treatment of the problem. An
important next step will be to extend the framework to more complex and biologically
realistic models that include temporal or spatial heterogeneities.

We suggest that a path for further investigation lies in continuing to look for robust
extensions of models. The results we have presented here about robust random walk
models need not be exhaustive. In Example 1, we have shown that the two-dimensional
model with exponential step length is not robust but can be extended to a robust model
with an additional parameter (the power of the ch.f.). This would be similar to the
one-dimensional example in Sect. 3.2, where we demonstrated a robust extension to
the Laplace model. If we would use this extended model and during statistical infer-
ence estimate the power parameter together with all other parameters, we would be
using a robust model. Such an extension is, in theory, also possible for other models.
Unfortunately, although we may be able to straightforwardly construct the character-
istic function of such a robust extension, it can be more difficult to derive the bivariate
step density. To overcome this problem, one could fall back on numerical solutions.
For example, one could solve the inverse Hankel transform of Eq. (39) numerically
and embed this process into an inferential optimization routine such as likelihood
maximization or an MCMC algorithm.

Another avenue for future research will be to release the strict conditions of robust-
ness. In our definition presented here, the parameter transformation gn is a key element.
It ensures that we can systematically translate results about model parameters between
analyses using different sampling rates. The works by Pépin et al. (2004) and Codling
and Hill (2005) tried to establish such a transformation empirically for some specific
movement quantities. The relationships they found were able to correct for different
sampling rates to some extent. This suggests that although our robustness is a strong
condition on a model, there may be models that are approximately robust within cer-
tain ranges of sampling intervals. Often, we do not wish to compare data analyses with
widely varying sampling intervals. When we analyze movement, we always have to
be aware of the behavioural scale of interest, as the behavioural processes may vary
across scales (Yackulic et al. 2011; Fleming et al. 2014). Also, the same movement
path may be appropriately described by different models (e.g. ballistic or diffusive)
when viewed at different scales. However, it may be a reasonable goal to compare
movement analyses with sampling intervals within, e.g. a range of a few hours. Within
such a reasonable range, an approximate type of robustness may be sufficient.

Therefore, a useful extension of the robustness framework presented here is a defi-
nition of approximate robustness, which does not require the model distributions to be
exactly the same across resolutions but only approximately. We provide such a defini-
tion in Schlägel and Lewis (2015), in which we also make a step from simple random
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walks to spatially-explicit random walks that include a resource-selection component.
Our present paper already demonstrates that analytical calculations become techni-
cally involved as soon as we move to two-dimensional models. Therefore, to include
more biological realistic models in our robustness analysis, it is necessary to branch
out to numerical as well as Monte Carlo (i.e. simulation) methods. For example, a
challenge for future investigations of more complex models will be to identify a suit-
able parameter transformation gn as required by the robustness definition. For this,
simulations can be used, relating parameter estimates to the subsampling amount n,
similar to the approach by Benhamou (2004) and Codling and Hill (2005).

We have put forward a new mathematical rigorous approach to address the ques-
tion how sampling rate of movement data affects statistical inference and whether
models, a key tool for analyzing movement data, can be robust to varying sampling
rates. While our analysis here focuses on simple random walks, we hope to encourage
further research built on this theoretical basis. We have presented our new framework
of robustness to temporal resolution in the context of movement ecology. However,
randomwalks serve asmodels formovement also in other areas than ecology, for exam-
ple cell movement during physiological processes (Dickinson and Tranquillo 1993)
or blood vessel growth, termed angiogenesis (Plank and Sleeman 2003). Therefore,
our framework could be interesting to these fields as well.
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Appendix 1: Scaling property for a step density with symmetric stable
distribution

Here,wepresent a short calculation that shows the scaling property given inEq. (20) for
a step density pS(s)when S ∼ S (α, 0, σ, 0). The ch.f. of S isφ(u) = exp(−σα |u|α).
From this, the density of S can be obtained via an inverse Fourier transform,

pS(s) =
∫ ∞

∞
exp(−ius)φ(u) du. (50)

Analogously, we calculate the density of the summed steps S̃i,n = ∑n−1
j=0 Sni− j as

pS̃i,n (s) =
∫ ∞

∞
exp(−ius)φ(u)n du =

∫ ∞

∞
exp(−ius) exp(−σαn|u|α) du. (51)

A substitution, t = n
1
α u, yields

pS̃i,n (s) = n− 1
α

∫ ∞

∞
exp(−i tn− 1

α s) exp(−σα|t |α) dt = 1

n
1
α

pS

(
s

n
1
α

)
. (52)
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Appendix 2: Characteristic function of a radially symmetric random vec-
tor

Here, we provide details about the link between the characteristic function of a radially
symmetric random vector and the Hankel transform as stated in Eq. (33). The ch.f. of
the two-dimensional random vector S with density (30) is given by

φ(u) =
∫ ∞

−∞

∫ ∞

−∞
eiu·s pS1,S2(s1, s2) ds1ds2. (53)

Because the density is radially symmetric, we switch to polar coordinates via s1 =
r cos γ and s2 = r sin γ , where the angle γ is chosen such that the vector u has angle
zero. The determinant of the Jacobian for this transformation is |J | = r . The dot
product of the vectors u and s can be written as u · s = ‖u‖ r cos γ . With this, we
obtain

φ(u) =
∫ ∞

0

(∫ 2π

0
ei‖u‖r cos γ dγ

)
pS1,S2(r) r dr. (54)

The symmetry of the cosine allows us to simplify the inner integral as follows,

∫ 2π

0
ei‖u‖r cos γ dγ = 2

∫ π

0
ei‖u‖r cos γ dγ = 2π J0(‖u‖r), (55)

where J0 denotes theBessel function of the first kind. The last equation follows froman
integral representation of the Bessel function (Abramowitz and Stegun 1964, 9.1.21).
With this, the characteristic function becomes

φ(u) = 2π
∫ ∞

0
pS1,S2(r) r J0(‖u‖r) dr. (56)

The integral is the Hankel transform of order zero of the density pS1,S2(r) evaluated
at ‖u‖.
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